작품소개
“데이터 과학자는 뭐하는 사람일까? 지금처럼 하면 되는 것일까? 나도 선배 데이터 과학자들처럼 성장할 수 있을까? 3년 10년 후에도 생존할 수 있을까? 데이터 분석 환경이 이다지도 척박한데 어떻게 데이터 분석을 한단 말인가? 팀워크는, 팀빌딩은 도대체 어떻게 해야 하는 걸까?” 데이터 과학자로 살아가면서 하루에도 천 번을 되묻는 물음에 아마존, IDT, 빅쏠, 우아한형제들, 코드스테이츠, 쏘카, 삼성전자, 11번가, 페블러스 전현직 데이터 과학자 9명이 답합니다. 데이터 과학자, 데이터 엔지니어, 데이터 분석가뿐만 아니라 데이터를 활용하는 비즈니스 조직의 리더라면 지금까지 만나볼 수 없었던 생존과 성장의 원칙에서 자신만의 해답을 찾아보세요.
* 원칙 : 앞서 경험한 선배가 발견한 10년이 지나도 변치 않을 업의 방정식
저자소개
세상은 데이터로 이루어져 있다고 생각하며, 이를 잘 활용하기 위해 다양한 산업군에서 데이터 분석 및 활용 방안을 연구합니다. 카이스트 및 포항공과대학교에서 산업공학과 전산학을 전공했으며, ML GDE(Machine Learning Google Developer Experts)로도 활동합니다.
_현) 데이터 과학자, ML GDE
_전) ODK Media 데이터 분석가
_전) 우아한형제들 데이터 분석가
_전) SK플래닛 데이터 분석가
저역서
_《데이터 분석가의 숫자유감》, 《데이터를 엮는 사람들 데이터 과학자》 저
_《빅데이터 분석 도구 R 프로그래밍》, 《The R Book(Second Edition) 한국어판》, 《딥러닝과 바둑》 역
_《딥러닝 레볼루션》, 《인터넷, 알고는 사용하니?》 감수
목차
01 루틴하게 점진적으로 작동하는 팀워크
__풀스택 연구자
__회고에서 싹튼 팀워크
__매일 오전의 코워킹 활동, 오메가
__점진적인 보고서, 점보
02 데이터 과학자 생존 무기 만들기
__미국에서 데이터 과학자
__데이터 사이언티스트가 되기까지 여정
__교과서적인 데이터 분석 방법
__차별화된 데이터 분석 방법
03 척박한 데이터 환경에서 살아남은 사람들의 우화
__우화 1 : 너는 전문가니까, 너가 알아서 잘 할 거야?!
__우화 2 : 벽 너머의 데이터
__우화 3 : 저기 저 차가운 바닥에서 다시
__세 우화의 교훈과 숨겨진 이야기
04 시작하는 데이터 과학자를 위한 개발과 운영 지침서
__문제 정의 단계
__데이터 준비와 피처 엔지니어링 단계
__모델 개발과 평가 단계
__배포와 운영 단계
05 데이터 분석의 본질에 집중하기
__목적을 명확히 하고 과정을 살피자
__익숙하지 않은 다양한 시도를 하자
__더 잘 공감할 수 있는 사람들과 함께 성장하자
__때로는 단순한 것만으로도 충분하다
06 데이터 과학자의 ‘기술 부채’ 갚기
__캐글과는 다른 데이터 과학자/분석가의 실제 하루
__분석도 엔지니어링의 일부
__모르면 배웁시다
07 메타인지와 액션으로 점진적으로 성장하기
__의도적으로 남다른 선택해보기
__주기적으로 일하는 목적 찾기
__제너럴리스트, 스페셜리스트 이분법으로 생각하지 않기
__업무도 메타인지하며 목적 중심으로 생각하기
__나의 세상 정의하기
__회사에서 필요한 일과 내 흥미를 일치시키기
__팀 현황을 파악해서 개선점 만들기
__더 나은 커뮤니케이션 능력 기르기
__비즈니스 모델과 데이터의 접점 분석하기
__지금 힘들다면 여유가 있는지 생각해보기
08 데이터로 고객을 움직이는 데이터팀이 되어가는 여정
__데이터팀을 선택하는 일곱 가지 기준
__팀 미션 확인하기
__분석 플랫폼 정하기
__매일 사라지는 중간 결과 데이터 문제 해결하기
__고객 유입 경로 데이터를 만들고 분석하기
__반복되는 분석 요청을 대시보드로 만들기
09 전달력을 높이는 시각화 디자인 원칙
__현실 : 정보 전달은 생각보다 어렵다
__원칙 1 : 뇌와 자극 반응에 대한 지식 쌓기
__원칙 2 : 지식을 실천할 기술 연마하기
__원칙 3 : 대중에게 공개하고 반응 살피기